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LETTER TO THE EDITOR 

Sublattice order parameter in the BCSOS model: a finite-size 
Monte Carlo study 
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pcuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy 
5 Diparlimento di Fisica, Universitl di Genova. Via Dodecanem 33, 16146 Genova, Italy 

Received 15 April 1992 

Abstract. We intmduce and investigate via Monte Carla simulation the finite-size critical 
behaviour of the body-centred-salid-on-satid (8csos) model's sublattice order parameter 
and related (staggered) susceptibility. We confirm the scaling ansatz of Baxter for the 
susceptibility, a quantity which has remained hitheno unexplored. We also verify the 
Kosterlitz-Thouless universality clas i n  the temperature dependence of both these equi- 
librium properlies. Our extrapolation for the location of the infinite system toughening 
transilion temperature is  in g w d  agreement with the eract value. 

Surface roughening phenomena are often studied within solid-on-solid (SOS) models. 
The simplest of such models, such as the discrete Gaussian or the absolute SOS 
models, have no sublattice structure and therefore roughening takes place without 
any accompanying change of symmetry. Real surfaces, however, commonly exhibit 
two, and sometimes three or more, sublattices. For example: FCC (100) and (110), as 
well as BCc(100) and ( l l l ) ,  have two sublattices, FCC (111) and BCC (110) have three, 
and so on. Their ground states are accordingly n-fold degenerate, corresponding to 
the equivalent possibilities of the topmost layer belonging to one of the n sublattices. 
At finite temperatures, one can therefore associate any thermodynamic state of the 
surface with a well defined sublattice order parameter P. Moreover, we expect this 
order parameter to vanish identically in the rough state (where all sublattices must 
enter with equal weight). It follows that a sublattice disordering phase transition 
is expected to take place, either below the roughening temperature TR, or at TR 
itself. It should be stressed that, apart from this constraint, the two phenomena, 
sublattice disordering and roughening, are distinct. They will in general occur at 
different temperatures, and belong to different universality classes. den Nijs [l], as 
well as our group [2,3], have introduced models which address this type of situation. 
Sublattice disordering is indeed analogous to  the 'pre-roughening' of den Nijs, who 
calls the ensuing phase 'disordered flat'. This class of models is presently the subject 
of numerical investigations 141; yet, it is highly desirable to understand sublattice 
disordering, if present, in simpler models, where a good deal of experience has 
accumulated over the years. 

1) Also at Im, PO Box 586, 34014 "ieste. Italy. 
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The simplest surface model which is of the SOS type, but does embody the presence 
of two sublattices, is van Beijeren's well-known BCSOS model [5 ] .  It is mapped onto 
the F version of the six-vertex model, for which many properties are known exactly. It 
is therefore of interest to enquire about sublattice disordering within the BCSOS model. 
The results of this enquiry form the main subject of this letter. In short, we first define 
the sublattice order parameter P and find its exact expression within the BCSOS model. 
We verify that it coincides with the Legendre conjugate to Baxter's staggered field in 
.L,, v -...\A~T rL 71 TIL finrl tho+ .n .,.,..i.~.~~ mnt:n..n..e~.r o, T I n  +h.,+ ...~.i~~+i,.~ 
L U G  r -,I,u"cI ,U, 'J. ..r llll" L L I a L  r I a L L L U I I I o  WL'LLL1""""J a, 'R, .," L L l Y L  . ,u"IPLLI-  

disordering and roughening do  coincide in the BCSOS model. For other relevant 
quantities, such as the sublattice susceptibility, there is no exact expression and we 
therefore perform a Monte Carlo finite sue scaling study, similar to that needed 
for more realistic models [3,4]. The results are very instructive, both for the BCSOS 
model, where an early conjecture by Baxter is checked, and in establishing a viable 
method for qualifying separately sublattice disordering and roughening phenomena. 

A natural definition, within the BCSOS model, for the sublattice order parameter 
of (unreconstructed) BCC (100) and FCC (110) surfaces is as follows. Denote the two 
interpenetrating sublattices which make up the surface as B (black) and W (white). 
The ground state is doubly-degenerate and consists of the B sites at height +1  with 
respect to  the w sites at height 0 (and vice versa: the f l  near-neighbour height 
difference restriction is implicit in the model). For a thermally excited configuration 
define probabilities of stepping up and stepping down from a given B site to one of 
its w nearest neighbours, P: = 1 - P i  and Pg,  where 

+m 

P i  = p,b,  
odd m=-m 

and the sum extends over all the odd B site heights m. The analogous definition. 
holds for P i ,  where the sum runs over all even heights. Here p ,  is the probability 
of finding a surface atom at height m (king the Rat surface reference height at 
m = $), while b, is the probability of stepping down from an atom at level m. For 
the F model we define, in Lieb's notation [SI 

a' + b2 - ci 
A = - c o s h X =  

2 a b  

with a = b = exp(-e/t ,T)  and c = 1 the Boltzmann weights associated with the 
vertices of the F model. Then, the above probabilities read [9] 

p ,  = constantx exp [ - X(m - +)*I (3) 

and [lo] 

The order parameter is then defined through 

P i  - P\; 
P i  + P i  

P, = 
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and takes values +1 (or -1) in the ground state and 0 in the disordered rough phase. 
At intermediate temperatures this quantity singles out which of the two sublattices’ 
atoms are predominant in the surface top layer. The special feature of this quantity 
is that it vanishes with all its temperature derivatives at the roughening temperature 
TR given by 

k B T R = 4 J / l n 2  r 5 . 7 7 1 J  (6)  

with J = c / 4  the BCSOS coupling constant (throughout the paper temperatures are 
measured in units of J). This behaviour characterizes the sublattice order parameter 
of the infinite-order roughening transition. 

Another definition of the order parameter was given by Baxter for the F 
model [6,7]. In the notation of Baxter, after partitioning the (dual) vertex lattice 
in two sublattices A and B, an energy -s (+.) is associated with every horizontal 
(vertical) arrow pointing from an A vertex to a B vertex and +s (-s) if it points 
from B to A. In this way s has the character of a staggered external field and is the 
equivalent of the magnetic field of the king model as it is able to lift the degeneracy 
of the ground state. Thus the order parameter which corresponds to this field is 
simply 

p ,  = -(af/as), (7) 

where f is the free energy per vertex. With the introduction of the field, the F 
model becomes insolvable, except for T = 2TR [a]. However, the order parameter 
Pz in zero field is known exactly at all temperatures and is given by [7] 

I’ 
I. ---I. ..*..:-_̂ :__.L̂ . _L. ... !.. ^_^:^_^ c - . m  ._I m ~ - -  :A-...:--, ^ ^  

i i  can DC snuwn ai  LIID puini inat [ne series ~ z p i i s i u r i s  iur F, anu v2 arc ~ucriiicai, su 
that the two order parameters are taken to be one and the same P. No information 
is available, however, on the behaviour of the staggered field susceptibility, x = 
-(a2f/asZ)T, except again at T = 2TR and s-O+ where it diverges as I n s .  
Nevertheless, Baxter [7] has proposed that for s = 0 and in the neighbourhood of 
TR this susceptibility should obey the scaling ansatz 

X-pZ/fs ing (9) 

where fsin, is the singular part of the free energy. 
fSing-exp(-r2/X) and that 

If one considers that 

P-X-’ exp(-rZ/4X) (10) 

X-X-’ exp(?r2/2X) (11) 

one arrives at 
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which implies an extremely strong divergence at TR, since, near TR, X-(T, - T)’IZ.  
In this letter we examine the general temperature behaviour of both P and x by 

means of Monte Carlo simulation of the BCSOS model. In a finite size lattice, the 
operative definition of the order parameter PI has to be modified as follows. Since 
for the BCSOS model lattice topology implies P; + PG = $, we have 

P = 4P,- - 1 .  (12) 

The stepping down probability P; can be evaluated from the thermal and site average 
of the local p i ( R i )  which, for a given configuration and B site i, is given by 

where D runs over the four neighbouring w sites. Tiking the site average, P reads 
(the absolute value ensuring a meaningful averaging procedure) 

where N is the number of B (or w) sites and the angular brackets denote thermal 
averaging. The related susceptibility is given by 

A L=32 

- 

0 2 4 6 8 10 12 
T 

Flgure 1. BCSOS order parameter temperature behaviour for different system s h e ,  
compared with the infinite system exact behaviour (full cuwe). In this and all subsequent 
figures temperatures are exprwed in units of J; no error bar is plotted if smaller than 
the point size. 
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In figure 1 we report our Monte Carlo results for the temperature dependence 
of the order parameter P for different linear lattice sizes L=10, 16, 20, 24, 28, and 
32. Periodic boundary conditions are employed. A single Monte Carlo step consists 
of the random addition or removal of an 'atom', so surface height is not conserved. 
The infinite system critical behaviour (also reported for convenience) is approached 
slowly, like L-'/' at T, as finite-size s c a h g  would suggest, as the size L is increased. 
Below TR however, one may attempt to fit the largest size data with the infinite-system 
asymptotic form, equation (10). We select a temperature window 0.70 < T/T,  < 
0.88 in order to avoid finite-size effects in the immediate neighbourhood of TR, 
yet capturing the critical region temperature dependence. Our fitting is consistent 
with the form (lo), yielding an exponential e x p ( - A / ( T ,  - T)'/')  having A = 
2.50*0.15, which compareswell with the exact value A = a 2 / 2 f i l n 2  = 2.517.. .. 
Moreover, the same fitting yields a value of T, = 5.73f0.08, to be compared with 
5.771 of equation (6). The standard procedure for determining TR has been the 
study of the interfacial width divergence a t  and above roughening within finite-size 
scaling [3]. The square of this width behaves as dhz K ( T )  In L for T > T, with 
the universal behaviour K ( T )  = l / a2  + C F- T - T, for T-T;, as clearly shown 
by our Monte Carlo data reported in figure 2. This procedure also yields an accurate 
estimate of T, = 5.66k0.11. 

1 
Sh2 

.I3 

.B 

.4 

.2 
2 4 e 8 10 12 

T 
Figvre 2. Finite-size behaviour of the average square inlerfacial width. In the insct, lhe 
behaviour of [ K ( T )  - l/r2I2 is reported in order to determine TR from exlrapolalion 
of the linear temperature dependence (see text). 

Having checked the method against exact results, the main purpose of this work 
consists in reporting novel data for the staggered field susceptibility x, as shown in 
figure 3. In the infinite system, x diverges at TR remaining infinite above. For a 
finite lattice, we find a divergence with the size of the lattice typical of infinite-order 
transitions of the form 

x( L ,  T)-L"(T)  (16) 
with an unknown temperature-dependent exponent w. Exactly at T,, Baxter's ansatz, 
equation (ll), would imply (barring logarithmic corrections) 

w(T,) = 1 .  (17) 
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Flgnm 3. BCWS staggered susceptibility for different Wtem Sizes. Notice the markedly 
different divereence wi!h size a! Tx an? ~ T R ,  rqxc!k!y.  
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Fig"ie 4. Sh~rgence oi ringgerrd suscrpiibiiiiy ~ ( i ,  
an exponent Y(TR) = I for the largest sizes available. 

j wiih size i consistent with 

This follows from the asymptotic form &exp(az/'2A) for the correlation length 
which becomes of the order of L in a finite system at YR. Our data are compatible 
with w = 1 (see figure 4); we can exploit our knowledge of the infinite-system 
TK in order to get w(TK) = 0.98f0.06 as obtained from fitting our largest sizes 
data. Furthermore we obsene that the peak in x( L , T )  (which might be taken as 
a measure of TR) shifts vely slowly towards TR, like (ln L)-2  to be precise, as L k? 
increased. In turn, this whole procedure might represent a way of determining the 
suhlattice disordering temperature in models of the BCSOS type where the transition 
point is unknown. Indeed, x is the only sensible diverging quantity in an otherwise 
smooth phase transition. We point out that for the associated 2D X Y  magnetic 
model (where temperature scales inversely with respect to the SOS model) the direct 
field susceptibility is known to diverge at and below T, as L2-VlT), where 11 is 4 at 
T, and decreases below. This leads to a stronger divergence in the critical phase, 
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contrary to the case of the staggered susceptibility where w ( T )  is expected to vanish 
at ZT,. The latter result follows from the large-distance form G ( r ,  2TR)-r-’ of the 
staggered vertex correlation [6] and the usual Buctuation4issipation formula 

where a is the iattice spacing acting as a small-distance cutoff. Our data for x(2TRj 
are consistent with w = 0 and a In L divergence. However, it is lamentable that 
no exact knowledge of the relation between w ( T )  and q(T)  is as yet known. Were 
we to take a linear dependence, the conjecture w = S q  - 1 = 2TR/T - 1 would 
reasonably fit our Monte Carlo data. 

In conclusion, we have studied (for the first time to our knowledge) the exact 

ceptibility of the BCSOS model. The validity of Baxter’s conjecture for the asymptotic 
diverging behaviour of x at TR has been verified. Sublattice disordering and rough- 
ening occur together at T = TR, and with the same Kosterlitz-Thouless behaviour, in 
this model. Thus, sublattice disordering in the BCsos model is driven by the thermal 
excitation of steps which are responsible for roughening. However, our definition of 
?he .ssb!~?!ke ox!er parameter and suscepdbi!ity, as we!! a: the Mente Cx!e finite 
size scaling method which allows for a separate study of sublattice disordering and 
of roughening, can now be taken over to more realistic surface models. For many of 
these models the two phenomena should become totally distinct. 

Useful discussions with Henk van Beijeren are  gratefully acknowledged. The research 
of one of us (GJ) is supported by an award from the Saint-Gobain group. 

and finite+ize behaviour of su.Dpatiice patameter reirte& staggered s~m- 

References 

[l] den Nijs M and Rammelse K 1989 Phys. Rev. B 40 4709 
den Nijs M 1991 Phys. Rev. Leu 66 907 

Lwi A C and lbuzani M 1989 Surf Sci 218 223 
[3] Mazzeo G ,  Jug G, Lwi A C and ’lbsatti E Su$ Sci in p r w  
[4] Mazzeo G. work in progrw 
[SI van Beijeren H 1977 Phys. Rev. Lcrr 38 993 
[h] Baxter R J 1970 Phys. Rev. B 1 2199 
[7] Baxrer R J 1973 J. Phys. C: Solid Stare Phys. 6 L94 
!S! Lieb E H and Wu F Y 1972 Phare Tr0,rririoru and Crirical Phmomeno vol I! ed C Domb and 

[9] Forrester P J 1986 1. Phys. A: Mark Gen. 19 Ll43 
[lo] Levi A C, Spadacini R and Bmmei G E 1988 The Smrcrure of Surfeces I1 vol 11. ed J F van der 

iq jug G an&$ yuSi;i E 199; pys;co iish j g  

M S Green (New York: Academic) 

Veen and M A van Hove (Berlin: Springer) 


